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ABSTRACT

Context. In the framework of the Virtual Observatory (VO), the German Astrophysical VO (GAVO) developed the registered service
TheoSSA (Theoretical Stellar Spectra Access). It provides easy access to stellar spectral energy distributions (SEDs) and is intended
to ingest SEDs calculated by any model-atmosphere code, generally for all effective temperatures, surface gravities, and elemental
compositions. We will establish a database of SEDs of flux standards that are easily accessible via TheoSSA’s web interface.
Aims. The OB-type subdwarf Feige 110 is a standard star for flux calibration. State-of-the-art non-local thermodynamic equilibrium
stellar-atmosphere models that consider opacities of species up to trans-iron elements will be used to provide a reliable synthetic
spectrum to compare with observations.
Methods. In case of Feige 110, we demonstrate that the model reproduces not only its overall continuum shape from the far-ultraviolet
(FUV) to the optical wavelength range but also the numerous metal lines exhibited in its FUV spectrum.
Results. We present a state-of-the-art spectral analysis of Feige 110. We determined Teff =47 250 ± 2000 K, log g=6.00 ± 0.20, and
the abundances of He, N, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, and Ge. Ti, V, Mn, Co, Zn, and Ge were identified for the first time in
this star. Upper abundance limits were derived for C, O, Si, Ca, and Sc.
Conclusions. The TheoSSA database of theoretical SEDs of stellar flux standards guarantees that the flux calibration of astronomical
data and cross-calibration between different instruments can be based on models and SEDs calculated with state-of-the-art model-
atmosphere codes.
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1. Introduction

Feige 110 is a bright (mV = 11.845 ± 0.010, Kharchenko &
Roeser 2009), subluminous OB-star (type sdOB, Heber et al.
1984a; type sdO D,Vennes et al. 2011). It is widely used as a
spectrophotometric standard star (e.g. Oke 1990; Turnshek et al.
1990; Bohlin et al. 1990). Since Feige 110 will be used as a ref-
erence star for the flux calibration of X-Shooter1 (Vernet et al.
2011) observations from 3000 Å to 25 000 Å (Moehler et al.
2014), we decided to reanalyze its spectrum with state-of-the-
art model-atmosphere techniques.

An early spectral analysis with approximate LTE2,
line-blanketed hydrogen model atmospheres yielded an

� Based on observations with the NASA/ESA Hubble Space
Telescope, obtained at the Space Telescope Science Institute, which is
operated by the Association of Universities for Research in Astronomy,
Inc., under NASA contract NAS5-26666.
�� Based on observations made with the NASA-CNES-CSA Far
Ultraviolet Spectroscopic Explorer.
��� Table 2, Figs. 3 and 7 are available in electronic form at
http://www.aanda.org
1 http://www.eso.org/sci/facilities/paranal/
instruments/xshooter.html
2 Local thermodynamic equilibrium.

effective temperature Teff =39 000 K and a surface gravity
log(g/cm/s2) = 6.5 (Newell 1973). Kudritzki (1976) showed
that both, the consideration of deviations from non-LTE (NLTE)
as well as of opacities of elements heavier than H, have a signif-
icant influence on the determination of Teff and log g in an anal-
ysis of optical spectra (Table 1). Heber et al. (1984a) extended
the analysis of Feige 110 to the ultraviolet (UV) wavelength
range (IUE3 observations, 1150 Å <∼ λ <∼ 2000 Å) in addition
to high-resolution optical spectra (4000 Å <∼ λ <∼ 5100 Å) and
derived Teff =40 000+5000

−3000 K, log g=5.0 ± 0.3, and He/H =

0.03+0.03
−0.02 (by number) using H+He (with subsequent C+N+Si

line-formation calculations) NLTE models.
With the FUSE4 mission, the interstellar deuterium and

oxygen column densities toward Feige 110 were measured.
Friedman et al. (2002) used optical spectra and estimated the
atmospheric parameters by comparison with a grid of synthetic
NLTE model-atmosphere spectra (using TLUSTY to compute
the stellar atmosphere model and SYNSPEC to generate the
SED, Hubeny & Lanz 1995, just “TLUSTY” hereafter), that
considered H and He. They achieved Teff =42 300± 1000 K,
log g=5.95 ± 0.15, and He/H = 0.011 ± 0.005. With the higher

3 International Ultraviolet Explorer.
4 Far Ultraviolet Spectroscopic Explorer.
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Table 1. Teff and log g of Feige 110 determined by Kudritzki (1976).

LTE NLTE
He/H

Teff/K log (g/cm/s2) Teff/K log (g/cm/s2)

42 600 6.3 44 600 5.9 0.1
42 400 6.5 42 700 6.4 1.0

Notes. He/H gives his models’ abundance ratio by number.

log g (in agreement with Kudritzki 1976), their spectroscopic
distance of d = 288 ± 43 pc agreed with the Hipparcos5 par-
allax distance of d = 179+265

−67 pc.
In the following, we describe our analysis in detail. In

Sect. 2, we give some remarks on the observations. Then, we in-
troduce our models and the considered atomic data (Sect. 3) and
start with a preliminary analysis (Sect. 4) of the optical spectrum
based on H+He models followed by a highly sophisticated anal-
ysis with metal-line blanketed models (Sect. 5). We summarize
our results and conclude in Sect. 6.

2. Observations

Our main optical spectrum is a median of 19 X-Shooter obser-
vations, taken between 26 October 2011 and 5 July 2012 with a
5′′ slit (the seeing was below 1′′ during the observations) and an
exposure time of 120 s each. The achieved resolving power was
R = λ/Δλ ≈ 4800. All spectra were extracted with ESO’s stan-
dard pipeline-reduction software (with the actual version at the
time of the respective observation). Heliocentric correction and
correction to an airmass =0 were applied. In addition, we used
optical HST/STIS6 spectra (ObsIds O40801010 and O40801030
co-added) from the archive for the determination of the interstel-
lar reddening.

Our far-ultraviolet (FUV) spectrum consists of two obser-
vations of Feige 110 that were performed by FUSE, both in
June 2000 and both through the LWRS spectrograph aperture.
The dataset IDs were M1080801 and P1044301, with exposure
times of 6.2 ks and 21.8 ks, respectively. Alignment of the four
FUSE telescope channels was excellent throughout both obser-
vations, with RMS exposure-to-exposure variations in flux un-
der 0.5% in all channels. The processing of individual exposures
to produce a combined spectrum spanning 905–1188 Å was the
same as that described for G191−B2B in Rauch et al. (2013) and
won’t be repeated here. The signal to noise per 0.013 Å pixel in
the continuum for the combined spectrum is typically 80:1 short-
ward of 1000 Å and 120:1 longward of 1000 Å. Approximately
37% of the exposure time was obtained during orbital night.
Comparison of the spectra obtained during day and night por-
tions of the orbit found a discernible difference only in the cores
of Ly β and Ly γ. Only the night data were used for these spectral
regions. Weak airglow emission was still present at Ly β during
orbital night, but the affected pixels had no impact on the analy-
sis of the stellar spectrum.

Additional UV spectra were retrieved from MAST. We
used all available low-resolution IUE spectra (SWP03737,
SWP20091, SWP21888, SWP21890, SWP21891, SWP21892,
LWP01913, LWP01914, LWP01915, LWP02505, LWP02506,
LWP02507, LWP02508, and LWR11785 co-added) and an
HST/STIS spectrum (ObsId OBIE01010, exposure time

5 http://www.rssd.esa.int/index.php?project=HIPPARCOS
6 Hubble Space Telescope/Space Telescope Imaging Spectrograph.

40000/5.00 H:He = 89:11 (Heber)
42300/5.95 H:He = 96: 4 (Friedman)
46250/5.90 H:He = 92: 8 (our work)
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Fig. 1. Comparison of three synthetic spectra with our optical observa-
tion of Feige 110. Teff , log g , and the H:He ratio by mass are indicated.

1734.2 s, start time 2010-12-12 08:10:54 UT, grating G140M,
1191 Å <∼ λ <∼ 1246 Å, aperture 52′′ × 0.′′05, resolution = 0.1 Å).

3. Model atmospheres and atomic data

For our model-atmosphere calculations, we use the Tübingen
NLTE model-atmosphere package7 (Werner et al. 2003; Rauch
& Deetjen 2003), that assumes a plane-parallel geometry and
considers opacities of elements from H to Ni (Rauch 1997,
2003). The models are in hydrostatic and radiative equilibrium.
TMAP was successfully used for many spectral analyses of hot,
compact stars (e.g. Rauch et al. 2007, 2013; Wassermann et al.
2010; Klepp & Rauch 2011; Ziegler et al. 2012).

The model atoms used in our model-atmosphere calculations
were either retrieved from the Tübingen model-atom database8

or compiled via the registered Virtual Observatory (VO) tool
TIRO9 that uses Kurucz’s atomic data10 and line lists (Kurucz
1991, 2009, 2011, and priv. comm.). Table 2 shows the statistics
of our model atoms.

4. Preliminary analysis

For a preliminary analysis, or verification of basic previous re-
sults, we employ the registered VO service TheoSSA11 and
the related registered VO tool TMAW12, to download pre-
calculated synthetic spectral energy distributions (SEDs) or to
calculate individual SEDs, respectively (cf. Rauch et al. 2013).
Figure 1 shows a comparison of SEDs with model parameters
of Heber et al. (1984a), Friedman et al. (2002), and of this
work with the observed optical spectrum. The Balmer decre-
ment is a sensitive indicator of log g (e.g. Rauch et al. 1998),

7 TMAP, http://astro.uni-tuebingen.de/~TMAP
8 TMAD, http://astro.uni-tuebingen.de/~TMAD
9 Tübingen iron-opacity interface.
10 http://kurucz.harvard.edu/atoms.html
11 Theoretical Stellar Spectra Access,
http://dc.g-vo.org/theossa

12 Tübingen Model-Atmosphere WWW Interface.
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Fig. 2. Comparison of the optical HST/STIS observation with our fi-
nal model SED. The synthetic spectrum is convolved with a Gaussian
(FWHM = 5 Å) to match the resolution of the observation. The error bar
indicates the visual brightness (mV = 11.847 ± 0.010).

and we derive log g=5.90 ± 0.20. At this log g , the He i/He ii
ionization equilibrium, i.e. the measured equivalent-width ra-
tio of He i and He ii lines, is well reproduced by our model at
Teff =46 250 ± 2000 K. The He line strengths are matched at a
photospheric He abundance of 8±2% by mass. Although the the-
oretical H and He line profiles agree well with the observation,
the central depressions are not matched perfectly. This may be a
hint that a weak Balmer-line problem (cf. Napiwotzki & Rauch
1994; Rauch 2000) exists because metal opacities are neglected.
For the same reason, our synthetic H+He SEDs are not suitable
for an analysis of the H i Lyman lines in FUV spectrum. Fully
metal-line blanketed model-atmospheres are mandatory for this
purpose (Sect. 5). However, from our derived Teff , we are well in
the parameter range where no deviation between H i Lyman- and
Balmer-line analysis is expected (Good et al. 2004, their Fig. 4).

We adopt our derived Teff and log g values, that also repro-
duce well the HST/STIS observation (Fig. 2), for our further
analysis and will verify them with our final, fully metal-line
blanketed model.

Within error limits, our preliminary values agree well with
those of Friedman et al. (2002). Only ΔTeff = ±1000 from their
χ2 fit appears to be too optimistic. It is worthwhile to note, that
the result of Kudritzki (1976, Table 1, his lower He abundance
model) is relatively close to our result.

5. Line identification and detailed analysis

Friedman et al. (2002) identified photospheric lines from
N iii–v, Svi, Cr iv–v, Fe iii–iv, and Ni iv in the FUSE observa-
tion. Their SED calculation (SYNSPEC, Hubeny & Lanz 1995)
included all elements from H to Zn, all with solar abundances
but He (1.3 × 10−1 times solar), C (≈4 × 10−6 times solar), Si
(≈2 × 10−7 times solar), and Cr (≈21 times solar).

We decided to include H, He, C, N, O, Si, P, S, Ca, Sc, Ti,
V, Cr, Mn, Fe, Co, Ni, Zn, and Ge in our calculations. Figure 3
shows the ionization fractions of these elements. For the iron-
group elements (here Ca–Ni), the dominant ionization stages are
iv–v. All SEDs that were calculated for this analysis are avail-
able via TheoSSA.

For the line identification in the FUSE wavelength range
(905–1188 Å), it was necessary to determine the stellar
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Fig. 4. FUSE observation of Feige 110 (gray) compared with two syn-
thetic spectra calculated from our final model (thin, blue in the online
version: with Kurucz’s POS lines; thick, red: with Kurucz’s LIN lines).
All spectra are convolved with a Gaussian (FWHM = 1 Å) for clarity.

continuum flux precisely. We started with a measurement of the
interstellar neutral hydrogen column density. From Lyα in the
STIS spectrum and the higher members of the Lyman series in
the FUSE spectrum, we determined nH i = 1.8± 0.8× 1020 cm−2

in agreement with Friedman et al. (2002, nH i = 1.4 ± 0.5 ×
1020 cm−2 determined from the high-resolution IUE spectrum
SWP15270). To measure the interstellar reddening, we normal-
ized our synthetic spectrum to the 2MASS H brightness be-
cause the interstellar reddening is negligible there and adjusted
EB−V to match the IUE, STIS, and FUSE flux levels. Our re-
sult is EB−V = 0.027 ± 0.007. This very low value is in agree-
ment with the absence of the 2175 Å bump in the IUE LWP
spectra (Sect. 2). The Galactic reddening law of Liszt (2014a,b,
valid for 0.015 <∼ EB−V <∼ 0.075 and |b| ≥ 20◦), NH i/EB−V =
8.3×1021 cm−2mag−1, predicts 0.012 ≤ EB−V ≤ 0.031 in agree-
ment with our value.

The comparison of our models to the FUSE observations
shows that we can reproduce well the observed flux level
(Fig. 4), if we include all the lines from Kurucz’s LIN lists
(Sect. 3). These include laboratory-measured lines with “good
wavelengths” as well as theoretical lines13. The lines with good
wavelengths are presented in Kurucz’s POS lists. Unfortunately,
the ratio of LIN to POS lines is about 100 and thus, most line
wavelengths are uncertain. Moreover, the continuum flux of the
POS-line spectrum appears artificially high compared to the LIN
spectrum due to the neglected line opacity (Fig. 5).

The line-identification process is easy (the comparison of
two SEDs calculated from our final model where the oscillator
strengths of one individual atom/ion was artificially reduced for
one SED). It enabled us to unambiguously identify hundreds of
lines of N, O, P, S, Ti, V, Cr, Mn, Fe, Mn, Ni, Zn, and Ge.

Our metal-line blanketed models have a different atmo-
spheric structure compared to the H-He models that were
used in the preliminary determination of Teff =46 250 K and
log g=5.90 (Sect. 4). Figure 6 shows the typical surface-cooling
(log m <∼ –2.5) and backwarming effects (log m >∼ −2.5), that
are an impact of the additionally considered metal opacities. A
detailed evaluation of the optical spectrum shows that slightly
higher Teff =47 250 K and log g=6.00 values are necessary to
reproduce the He i/He ii ionization equilibrium and the observed
H i, He i, and He ii line profiles best.

The abundance analysis follows a standard procedure.
Identified lines are reproduced by an abundance adjustment of

13 Kurucz’s LIN lists are used in our model-atmosphere calculations.
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Fig. 5. Same as Fig. 4, for a section of the FUSE observation (top panel:
POS, bottom panel: LIN). The POS lines are identified (in black, Fe and
Ni lines in blue and green for clarity, respectively) at the top of the top
panel. Lines of interstellar origin are marked in blue (with subscript
“is”) at the bottom of the top panel. The synthetic spectra are convolved
with a Gaussian (FWHM = 0.06 Å) to match FUSE’s resolution.

the respective species. For elements with no lines identified, we
increased the abundances until their line-detection limit. The op-
tical spectrum was used to further constrain the upper limit be-
cause lines of lower ionization stages, that are not observed,
appear there at too-high abundances in the synthetic spectrum.
Table 3 summarizes the lines that were used and the derived
abundances.

To identify ISM14 absorption lines in the FUSE observation
(cf. Friedman et al. 2002) and to judge the contamination of pho-
tospheric lines, we follow our standard procedure and model the
stellar spectrum simultaneously with the ISM line absorption
(e.g., Rauch et al. 2013). We modeled the latter with the pro-
gram OWENS (Hébrard et al. 2002; Hébrard & Moos 2003),
that considers different clouds with individual radial and tur-
bulent velocities, temperatures, column densities and chemical
compositions. Lines are represented by Voigt profiles. The best
fit is determined via a χ2 method. Our ISM model includes lines
of H2 (J = 0–9), H i, D i, C ii–iii, N i–ii, O i, Si i–ii, P ii, Ar i,
and Fe ii. Our results for D i and O i are consistent with those of
Friedman et al. (2002).

The complete FUSE observation is compared (including line
identifications) with our final model in Fig. 7.

14 Interstellar medium.
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Fig. 6. Temperature structure of our H+He model (thin, blue line:
Teff =46 250 K, log g=5.90), a metal-line blanketed model with the
same Teff and log g (dashed, red), and of our final model (thick, red:
Teff =47 250 K, log g=6.00). The formation depths of the lines cores of
optical lines of H i (Hα is the most outside), He i, and He ii are shown.

H He C N O Mg Si P S CaScTi V Cr MnFeCoNi Zn Ge

AA Dor 40000/5.46
Feige 110 47250/6.00
EC 11481-2303 55000/5.80-4

-3

-2

-1

0

1

2

3

4

5 10 15 20 25 30
 atomic number

 [
X

]

Fig. 8. Comparison of the determined photospheric abundances (arrows
indicate upper limits) of the three OB-type subdwarfs AA Dor (Klepp
& Rauch 2011), EC 11481−2303 (Rauch et al. 2010), and Feige 110.
Their Teff and log g are shown in the legend.

6. Results and conclusions

We performed a comprehensive spectral analysis of Feige 110,
based on observations from the FUV to the optical wave-
length range. We determined Teff =47 250± 2000 K and
log g=6.00 ± 0.20. The ionization equilibria of He i/He ii,
N iii/N iv/Nv, P iv/Pv, S iv/Sv/Svi, Ti iv/Tiv, V iv/Vv,
Cr iv/Crv/Crvi, Mnv/Mnvi, Fev/Fevi, Cov/Covi, and
Niv/Nivi are well reproduced with these values. The photo-
spheric abundances were determined based on the FUSE and op-
tical observations (Table 3). Figure 8 shows a comparison of the
photospheric abundances patterns of three hot O(B)-type sub-
dwarfs. While the intermediate-mass metals are solar or sub-
solar in all these stars, the iron-group elements but Fe have
strongly super-solar values. An exception is Fe in AA Dor and
EC 11481−2303, that appears to be solar. Neither this Fe pecu-
liarity nor the extremely low C and Si abundances in Feige 110
can be explained.

The position of Feige 110 in the Teff−log g plane shows
that it is located directly on the He main sequence (Fig. 9).
Feige 110 belongs, like AA Dor or EC 11481−2303, to the
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Table 3. Strategic lines and determined element abundances (mass fraction, error ±0.2 dex).

Element Analyzed lines Abundance [X]

H optical H i lines 9.12 × 10−1 0.00
He optical He i–ii lines 7.93 × 10−2 −0.50
C C III λλ 1174−1176 Å

C IV λλ 1118.41, 1122.49, 1168−1169 Å
<1.04 × 10−7 <−4.36

N N III λλ 1182.97, 1183.03, 1184.51, 1184.57 Å
N III λλ 3998.63, 4003.58, 4379.11, 4510.91, 4514.86, 4634.14, 4640.64 Å
N IV λλ 921.99, 922.52, 923.06, 923.22, 923.68, 924.28 Å
N V λλ 1238.82, 1242.80 Å

1.56 × 10−4 −0.65

O O III λ 1153.78 Å
O IV λλ 921.30, 921.36, 923.37, 923.43 Å

<1.78 × 10−6 <−3.51

Si Si III λ 1113.23 Å
Si IV λ 1122.49 Å

<3.96 × 10−7 <−3.23

P P IV λλ 1025.56, 1028.09, 1030.51, 1030.51, 1033.11, 1035.52 Å
P V λλ 1117.98, 1128.01 Å

6.67 × 10−6 0.06

S S IV λλ 1062.66, 1072.97, 1073.52, 1098.93, 1099.48 Å
S V λλ 1039.92, 1122.03, 1128.67, 1128.78 Å
S VI λλ 933.38, 944.52 Å

9.77 × 10−5 −0.50

Ca optical Ca iv lines <9.27 × 10−5 <0.16
Sc Sc IV λ 931.42 Å

Sc V λλ 939.40, 944.04 Å
<3.08 × 10−4 <3.82

Ti optical Ti iv lines, Ti IV λ 1183.63 Å
Ti V λλ 1153.28, 1163.52 Å

1.77 × 10−4 2.24

V V IV λ 1131.25 Å
V V λλ 978.16, 1142.74, 1157.58 Å

5.50 × 10−5 2.06

Cr many Cr iv–vi lines in the FUV, e.g.
Cr IV λλ 1043.46, 1065.26, 1072.10, 1096.64, 1126.35 Å
Cr V λλ 1031.10, 1035.04, 1042.55, 1045.04, 1060.65 Å
Cr VI λ 957.01 Å

1.92 × 10−3 2.06

Mn Mn V λλ 1040.04, 1043.65, 1048.63, 1049.43, 1055.98, 1062.49, 1172.06 Å
Mn VI λλ 1081.09, 1113.58 Å

1.92 × 10−3 2.25

Fe many Fev–vi lines in the FUV, e.g.
Fe V λλ 1002.87, 1015.33, 1020.36 Å
Fe VI λλ 1000.93, 1167.70 Å

1.08 × 10−3 −0.08

Co many Cov–vi lines in the FUV, e.g.
Co V λλ 1179.59, 1183.91, 1184.60 Å
Co VI λλ 1133.71, 1142.77, 1150.23, 1169.55, 1175.36 Å

8.72 × 10−4 2.32

Ni many Niv–vi lines in the FUV, e.g.
Ni V λλ 1124.30, 1178.92 Å
Ni VI λλ 1000.39, 1157.55, 1159.00, 1178.37 Å

2.28 × 10−3 1.51

Zn Zn V λλ 1116.84, 1120.33, 1158.76 Å 9.08 × 10−5 1.72
Ge Ge V λλ 1016.67, 1069.13, 1072.66, 1116.95, 1165.26 Å 5.38 × 10−5 2.36

Notes. [X] = log (abundance/solar abundance) of species X (solar values from Asplund et al. 2009).

hottest post-EHB15 stars. From a comparison to post-EHB tracks
(Dorman et al. 1993), we can extrapolate a stellar mass of
M = 0.469±0.001 M	. With R =

√
GM/g (G is the gravitational

constant), we calculated the stellar radius of R = 0.114+0.030
−0.024 R	.

We determined the distance of Feige 110 following the flux
calibration of Heber et al. (1984b) for λeff = 5454 Å,

dspec = 7.11 × 104 ·
√

Hν · M · 100.4 mV0−log g pc , (1)

with mVo = mV − 2.175c, c = 1.475EB−V, and the Eddington
flux Hν = 7.24 ± 0.37 × 10−4 erg/cm2/s/Hz at λeff of our final
model atmosphere. We used EB−V = 0.027 ± 0.007 (Sect. 4),
M = 0.469±+0.001 M	, and mV = 11.847±0.010 (Kharchenko
& Roeser 2009) and derived a distance of dspec = 297+62

−77 pc and a
height below the Galactic plane of z = 255+53

−66 pc. This distance is
about a factor of three larger than the new Hipparcos parallax-
measurement reduction (van Leeuwen 2007, HIP115195,

15 Extended horizontal branch.

π = 9.76 ± 3.44 mas) of dparallax = 102.46+55.78
−26.69 pc. Interestingly,

the older Hipparcosmeasurement published by Perryman et al.
(1997, π = 5.59 ± 3.34 mas, dparallax = 178.89+265.55

−66.91 pc) deviates
from this new value by a factor of almost two and would be in
agreement with our spectroscopic distance within error limits.

The discrepancy between spectroscopic and parallax dis-
tances is a significant problem. log g cannot be higher by about
0.5 to achieve a distance agreement, because the spectral lines
in the models appear too broad and too shallow. This apparently
is not a problem of our TMAP code, because Friedman et al.
(2002, dspec = 288 ± 43 pc) used the TLUSTY code and en-
countered the same problem. Similar discrepancies are reported
by Rauch et al. (2007, for LSV+46◦21 with TMAP: dspec =

224+46
−58 pc vs. dparallax = 129+6

−5 pc) and by Latour et al. (2013, for
BD+28◦4211 with TLUSTY, Teff =82 000 K, log g=6.2, and an
assumed M = 0.5 M	: dspec = 157 pc (no error estimate given)
vs. dparallax = 92+13

−11 pc).
Latour et al. (2013) mentioned that a relatively high log g

value and/or a low mass may be the solution and since they
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Fig. 9. Location of Feige 110 in the Teff−log g plane compared
to sdBs and sdOBs from Edelmann (2003), Rauch et al. (2010,
EC 11481−2303), and Klepp & Rauch (2011, AA Dor). Post-EHB
tracks from Dorman et al. (1993, YHB = 0.288, labeled with the respec-
tive stellar masses in M	) are also shown. Their start and kink points are
used to illustrate the location of the zero-age and terminal-age EHB for
this He composition. The He main sequence is taken from Paczyński
(1971).

regard the Hipparcos measurement as fully reliable and their
TLUSTY results reasonably reliable, the mass of BD+28◦4211
must be much less than the canonical post-EHB mass of about
0.5 M	. For their dparallax/dspec = 0.59, the mass has to be about
0.17 M	. In case of Feige 110, with dparallax/dspec = 0.31, the
mass has to be about 0.10 M	. In both cases, the mass can be
higher, if log g is higher. Thus, since log g is also the main error
source in the spectroscopic distance (Eq. (1)), one might specu-
late about the applied broadening theory for lines that are used
to determine log g . For the relevant H i and He ii lines (linear
Stark effect), TMAP as well as TLUSTY use the same data of
Tremblay & Bergeron (2009) and Schöning & Butler (1989), re-
spectively. However, all the narrow metal lines (e.g. of the iron-
group element) in the UV, that are broadened by the quadratic
Stark effect, cannot be reproduced at a much higher log g . To
summarize, the distance discrepancy is as yet unexplained.

The analysis of the FUV spectrum has shown that the lack
of reliably measured wavelengths of lines of the iron-group el-
ements (Ca−Ni) and of elements heavier than Ni hampers the
line-identification. Efforts in this field in the near future are
highly desirable.

The established database of spectrophotometric standard
stars in TheoSSA was extended by the OB-type subdwarf
Feige 110. The successfully launched Gaia16 mission will
provide accurate parallax measurements for spectrophotomet-
ric standard stars. This will strengthen the importance of a
VO-compliant database like TheoSSA that provides easy access
to the best synthetic spectra calculated for these stars.

16 http://www.esa.int/Our_Activities/Space_Science/Gaia
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Table 2. Statistics of the atoms used in our calculations.

Levels Levels

Ion NLTE LTE Lines Ion NLTE LTE Super lines Sample lines

H I 15 1 105 Ca II 7 0 26 2612
II 1 0 − III 7 0 28 40 664

He I 29 74 69 IV 7 0 22 20 291
II 20 12 190 V 7 0 26 141 956
III 1 0 − VI 7 0 26 114 545

C II 16 30 37 VII 1 0 0
III 13 54 32 Sc II 7 0 26 77 014
IV 54 4 295 III 7 0 27 687
V 1 0 0 IV 7 0 26 15 024

N II 15 232 18 V 7 0 24 261 235
III 34 32 129 VI 7 0 26 237 271
IV 16 78 30 VII 1 0 0
V 54 8 297 Ti II 7 0 27 312 054
VI 1 0 0 III 7 0 25 46 707

O II 16 31 26 IV 7 0 27 1000
III 54 18 222 V 7 0 26 26 654
IV 18 76 39 VI 7 0 26 95 448
V 19 107 40 VII 1 0 0
VI 1 0 0 V II 7 0 27 734 478

Si III 17 17 28 III 7 0 25 460 038
IV 16 7 44 IV 7 0 25 37 130
V 25 0 59 V 7 0 26 2123
VI 1 0 0 VI 7 0 25 35 251

P IV 15 36 9 VII 1 0 0
V 18 7 12 Cr II 7 0 27 728 080
VI 1 0 0 III 7 0 27 1 421 382

S III 21 210 35 IV 7 0 24 234 170
IV 17 83 32 V 7 0 26 43 860
V 39 71 107 VI 7 0 23 4406
VI 12 25 25 VII 1 0 0
VII 1 0 0 Mn II 7 0 27 136 814

Zn III 1 12 0 III 7 0 27 1 668 146
IV 1 75 0 IV 7 0 25 719 387
V 94 63 785 V 7 0 25 285 376
VI 1 0 0 VI 7 0 24 70 116

Ge III 1 15 0 VII 1 0 0
IV 8 1 8 Fe II 7 0 27 531 170
V 29 56 119 III 7 0 27 537 689
VI 1 0 0 IV 7 0 27 3 102 371

V 7 0 25 3 266 247
VI 7 0 22 991 935
VII 1 0 0

Co II 7 0 27 593 140
III 7 0 27 1 325 205
IV 7 0 27 552 916
V 7 0 27 1 469 717
VI 7 0 25 898 484
VII 1 0 0

Ni II 7 0 27 322 269
III 7 0 26 1 033 920
IV 7 0 27 2 512 561
V 7 0 27 2 766 664
VI 7 0 27 7 408 657
VII 1 0 0

Total 19 93 1021 1435 3958 35 286 864

Notes. In the case of iron-group elements (Ca–Ni), the super-lines include the sample lines (Kurucz’s LIN lines, cf. Rauch & Deetjen 2003).
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